

Innovating with the Multimodalities-Entextualization Cycle in Language Across the Curriculum (LAC) to Improve ESL Junior Secondary Students' English Literacy

Materials tried out in teachers' lessons:

Algebraic Equations in One Unknown: An LAC Collaboration [Teacher Version]

The following materials are designed by

Dr Yiqi Liu

Assistant Professor, Department of English Language Education, The Education University of Hong Kong

Miss Yi Cui

Senior Research Assistant, Department of English Language Education, The Education University of Hong Kong
and

Mr. Ka Ho Tam & Mr. Hon Chiu Ng

Cumberland Presbyterian Church Yao Dao Secondary School

Ms. Priscilla Ng & Mr. Pak Yui Leung

Lam Tai Fai College

Ms. Joe Man Wong

Tsung Tsin College

The lesson materials tried out represented an LAC collaboration between
the **Math (S1)** department and the **English** department.

The LAC project is supported by Seed Funding Grant (2020/21) and CRAC Grant (2021/22),

The Education University of Hong Kong.

Copyright © 2022 The Education University of Hong Kong

All rights reserved.

Unit Overview

Algebraic Equations in One Unknown

Module	Algebraic Equations in One Unknown
Target Class Level	Form 1
Learning Objectives	<p>Content learning objectives:</p> <p>At the end of the module, students will:</p> <ol style="list-style-type: none"> 1) apply the concept of algebraic equations in one unknown; 2) be able to formulate and solve algebraic equation in one unknown; 3) be able to solve daily-life problems by using algebraic equations. <p>Language learning objectives:</p> <p>At the end of the module, students will:</p> <ul style="list-style-type: none"> ● Understand the following language to formulate and solve algebraic equations in one unknown: the sum of ...; in total, [A] and [B] share [C] / [C] is shared among [A] and [B] the product of ... , [A] is greater / less than [B] by [C], [A] is [B] times [C]

Contents

Part 1 Addition

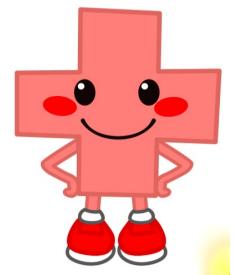
- Task 1 Language used for 'addition'
- Language Support 1 - Signals for 'addition'
- Task 2 Formulate algebraic equations
- Task 3 Create your story according to the algebraic equations

Part 2 Subtraction

- Task 4 Language used for 'subtraction'
- Language Support 2 - Signals for 'subtraction'
- Language Support 3 - Greater/less than...by
- Task 5 Formulate algebraic equations
- Task 6 Create your story according to the algebraic equations

Part 3 Multiplication

- Task 7 Language used for 'multiplication'
- Language Support 4 - Signals for 'multiplication'
- Language Support 5 - Times/Fractions
- Task 8 Formulate algebraic equations
- Task 9 Create your story according to the algebraic equations


Part 4 Multiplication and Addition/Subtraction

- Task 10 Language used for 'Multiplication and addition/subtraction'
- Task 11 Formulate algebraic equations
- Task 12 Create your story according to the algebraic equations

Part 5 My vocabulary bank and learning record

- Task 13 My vocabulary bank
- Task 14 My learning record

Part 1 Addition

Lead-in: Listening to the song - Solving one-step equations

(Notes to teachers: This lead-in activity can be replaced by a shorter introduction with images or visuals.)

Listen to the [song](#) (0:1:30). Fill in the blanks according to the song lyrics and your mathematical knowledge.

Solving Equations

$$\begin{array}{r}
 w + 8 = 14 \\
 - 8 \quad - 8 \\
 \hline
 w = 6
 \end{array}$$

$$\begin{array}{r}
 r - 2 = 5 \\
 + 2 \quad + 2 \\
 \hline
 r = 7
 \end{array}$$

$$\begin{array}{r}
 15 = 3f \\
 \hline
 3 \quad 3 \\
 5 = f
 \end{array}$$

Lyrics

We're doing algebra (代數, al/ge/bra ['æl.dʒə.brə]).

We love that algebra.

We're doing algebra.

We love that algebra.

Algebra is my favorite class.

I like the way you use different kinds of math,

such as operations (運算, operate + ion= operation, o/pe/ra/tion [,ɒp.ər'eɪʃən]) and variables (變數, va/ri/a/ble ['veə.rɪ.ə.bəl]).

It makes my brain feel so wonderful.

I like expressions (數學中的表達式, express + ion= expression, ex/pre/ssion [ɪk'sp(=b)rɛʃən]) and equations (方程式, equate + ion= equation, e/qua/tion [ɪ'kweɪ.ʒən]) too.

My favorite thing is to solve them, dude.

I like the unknowns (未知數, know → known → unknown); I like the ratios (比).

It's the algebra and I'm in the yo.

We're doing algebra.

We love that algebra.

We're doing algebra.

We love that algebra.

Let's talk about **solving equations** (解方程, **solve + ing à solving**):

Addition (加法, **add + ition= addition, a/di/tion** [ə'dɪʃən]),

subtraction (減法, **subtract + ion= subtraction, sub/trac/tion** [səb'trækʃən]) or

multiplication (乘法, **multiply + cation= multiplication, mul/ti/pli/ca/tion**[mʌl.ti.pli'keɪ.ʃən]).

Start on the side with the variable and

do the *inverse* (相反的) operation. *Serve*(發球)!

To **get the variable alone** (獲取單獨變量) is what it's about.

Once you do this, you can cancel them out.

I'll do the same thing to the other side:

Bring the variable down and the equal sign.

Solving one-step equations	
Step 1	Start on the side with the <u>variable</u>
Step 2	Do the <u>inverse</u> operation to get the variable <u>alone</u> . This means, When you see addition (+), you do subtraction (-) When you see <u>subtraction (-)</u> , you do <u>addition (+)</u> When you see <u>multiplication (*)</u> , you do <u>division (/)</u> When you see <u>division (/)</u> , you do <u>multiplication (*)</u>
Remember: whatever you do on one side, you have to do the same on the other side to balance the equation.	

Task 1 Language used for 'addition'

The plus sign “+” is for addition in maths. What English expressions mean “addition”? Read the following examples and find out.

(1) Visualizing what it means by “addition”

Expression	Mathematical	Everyday language (in daily life problems)		
	The sum of ... (noun)	In total (adverbial phrase)	Share (active voice)	shared among (passive voice)
Example	<u>The sum of</u> 2 and x is 18. Find the value of x.	Amy has 2 apples. Carol has x apples. They have 18 apples <u>in total</u> . Find the value of x.	Amy and Carol <u>share</u> 18 apples. Amy has 2 apples. Coral has x apples. Find the value of x.	18 apples <u>are shared among</u> Amy and Carol. Amy has 2 apples. Carol has x apples. Find the value of x.
Algebraic equation	$2+x=18$ $(x=16)$			
As you can see, either in mathematical language or everyday language, there are different ways to express ‘sum’. It is important to identify which number is the sum (和) and which are the addends (加數).				

Language Support 1 - Signals for addition

There are different ways to say “plus” (+) in English, including the following:

(1) The sum of...

Example: The sum of 2 and x is 18. \Rightarrow

Structure:

The sum of A and B is C. A+B=C

Subject *Verb* *Object*

Note: “the sum” is a noun (名詞) and “of” is a preposition.

(2) ...in total.

Example: They have 18 apples in total. \Rightarrow

Structure:

A and B have C in total A + B = C

Subject *verb* *object* *adv.*

(3) ...share...

Example: Amy and Carol share 18 apples. \Rightarrow

Structure:


A and B share C A + B = C

Subject *verb* *object*
(active voice)

(4) ... are shared among...

Example: 18 apples are shared among Amy and Carol. \Rightarrow

Structure:

C are shared among A and B A + B = C

Subject *Verb* *object*
(passive voice)

Task 2

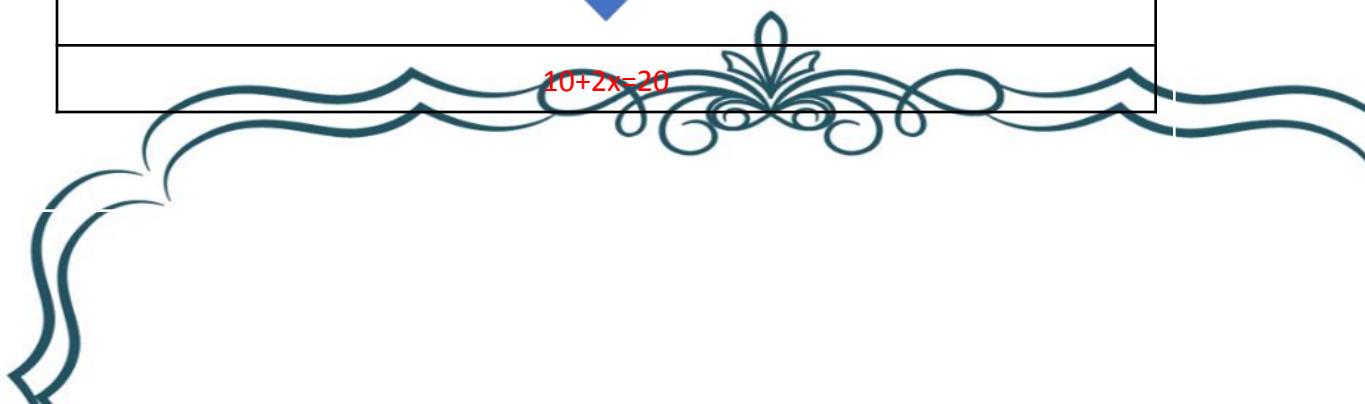
A. Fill in the table and formulate algebraic equations.

1 Kevin has 4 candies. Luis has $7x$ candies. They have 32 candies in total. Find the value of x .

Kevin has 4 candies.	\Rightarrow	4
Luis has $7x$ candies.	\Rightarrow	$7x$
They have 32 candies <u>in total.</u>	\Rightarrow	$\dots + \dots = 32$
$4 + 7x = 32$		

2 The sum of $4x$ and 8 is 80.

The sum of ... and ... is 80	\Rightarrow	$\dots + \dots = 80$
------------------------------	---------------	----------------------


		$4x+8=80$

3 \$800 is shared among Lucy and Luca. Lucy has \$200; Luca has 4x.

\$800 is shared among Lucy and Luca.	\Rightarrow	$\dots + \dots = 800$
Lucy has \$200.	\Rightarrow	200
Luca has 4x.	\Rightarrow	4x
		$200 + 4x = 800$

4 Steven has 10 Pokémon cards. His friend gives him 2x. Now he has 20 in total.

Steven has 10 Pokémon cards.	\Rightarrow	10
His friend gives him 2x.	\Rightarrow	2x
Now he has 20 in total.	\Rightarrow	$\dots + \dots = 20$

B. Formulate *Algebraic Equations* and solve the equations.

5 Cindy and Dorris share 50 notebooks. Dorris has 25 of them; Cindy owns $5x$ of them. Find the value of x .

$25+5x=50, x=5$

6 The sum of 7 and 8 is $3x$. Find the value of x .

$7+8=3x, x=5$

7 James and his sister share 5 pencils. James has $2x$ pencils. His sister has 3 pencils. Find the value of x .

$2x+3=5, x=1$

8 24 stickers are shared among Max and Linda. Max has 15, Linda has $3x$. Find the value of x .

$15+3x=24, x=3$

Task 3

Rewrite the algebraic expressions in words with “the sum of...” and create a short story. One example has been done for you. When both you and your partner finish, check your partner’s answers. Make sure his/her story matches the algebraic equation.

1 $6 + 5x = 26$

Mathematical language The sum of 6 and $5x$ is 26.

Short story in everyday language

Read the equation	Operation used	Language that can be used for the operation	Talking about the terms	
			6	$5x$
	+	- share 26 - 26 is shared among - 26 in total	Daisy has 6 books	Jack has $5x$ books
Write the story	26 books are shared among Daisy and Jack. Daisy has 6			

	books. Jack has $5x$ books.
--	-----------------------------

2

$$3x + 7 = 13$$

Mathematical language

The sum of $3x$ and 7 is 13 .

Short story in everyday language

Read the equation	Operation used	Language that can be used for the operation	Talking about the terms	
			3x	7
	+	13 books in total	Daisy has $3x$ books	Jack has 7 books
Write the story	Daisy has $3x$ books. Jack has 7 books. They have 13 books in total.			

3

$$20 + 11x = 141$$

Mathematical language

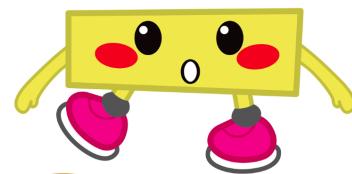
The sum of 20 and $11x$ is 141 .

Short story in everyday language

Read the equation	Operation used	Language that can be used for the operation	Talking about the terms	
			20	$11x$
	+	They share 141 books.	Daisy has 20 books	Jack has $11x$ books
Write the story	Daisy and Jack share 141 books. Daisy has 20 books. Jack has $11x$ books.			

4

$$15x + 60 = 120$$


Mathematical language

The sum of $15x$ and 60 is 120. Find the value of x .

Short story in everyday language

Read the equation	Operation used	Language that can be used for the operation	Talking about the terms	
	+	They share 120 books.	15x	60
			Daisy has 15x books	Jack has 60 books
Write the story	Daisy and Jack share 120 books. Daisy has $15x$ books. Jack has 60 books.			

Part 2 Subtraction

Task 4 Language used for 'subtraction'

" $-$ " is the sign for subtraction in maths. What English expressions mean "subtraction"? Read the following examples and find out.

Expression	Mathematical	Mathematical & Everyday language		Everyday language (in daily life problems)
	Is subtracted from	Greater than ... by	Less than ... by	Originally(初始) After Left (剩餘)

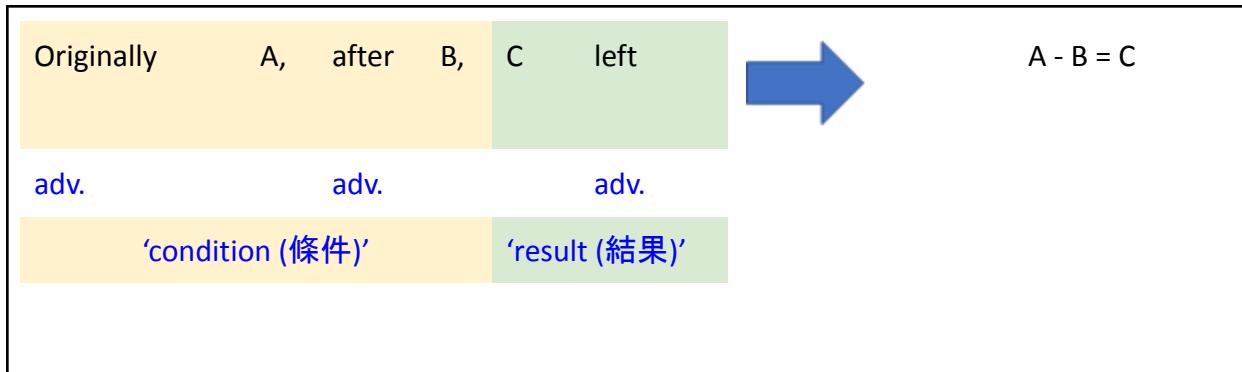
Question	When 16 is <u>subtracted from</u> $3x$, the result is 80. Find the value of x .	3y is <u>greater than</u> 16 <u>by</u> 80. Find the value of y.	16 is <u>less than</u> $3d$ by <u>80</u> . Find the value of d.	Carol had $3k$ apples <u>originally</u> . <u>After</u> buying 16 apples, she has 80 <u>left</u> . Find the value of k.
Algebraic equation	$3x-16=80, x=32$	$3y-16=80, y=32$	$3d-16=80, d=32$	$3k-16=80, x=32$
<p>As you can see, either in mathematical language or everyday language, there are different ways to express 'subtract'. It is important to identify which number is the subtrahend (減數), which is the minuend (被減數), and which is the remainder (差).</p> <p>*When you subtract two numbers, you subtract a subtrahend from a minuend to get the remainder.</p>				

Language Support 2 - Signals for subtraction

There are different ways to say "subtraction" (-) in English, including the following:

(1) Subtracted from... result...

Example: When 16 is subtracted from $3x$, the result is 80. \Rightarrow


Structure

When B is subtracted from A, the result is C.	\rightarrow	$A - B = C$
adv. Verb in prep. Passive voice		
'condition (條件)'		'result (結果)'

(2) Originally ... after.... left

Example: Carol had $3k$ apples originally. After buying 16 apples, she has 80 left. \Rightarrow

Structure

Language Support 3 - greater/less than ... by		
You might get confused about which should be subtracted from which when seeing questions with 'greater/less than'. Follow these 3 steps!		
Expression	A is greater than B by C	A is less than B by C
Step 1 Compare A and B	$A > B$	$A < B$
Step 2 Use the greater one to subtract the smaller one	$A - B$	$B - A$
Step 3 The remainder is the number following 'by'	$A - B = C$	$B - A = C$

Task 5

A. *Formulate Algebraic Equations.*

1 David had 16 candies originally. After buying n candies, he has 2 candies left.

David had 16 candies originally.	\Rightarrow	16
After buying n candies,	\Rightarrow	-n
He has 2 candies left.	\Rightarrow	$\dots - \dots = 2$

$16-n=2$	

2 When $6x$ is subtracted from 35, the result is 11.

When $6x$ is subtracted from 35,	\Rightarrow	$35-6x$
the result is 11.	\Rightarrow	$= 11$
$35-6x=11$		

3 800 is greater than $4x$ by 200.

Step 1 (Compare) $800 > 4x$

Step 2 (Make the greater number the minuend) $800 - 4x$

Step 3 (Make the equation with the remainder) $800-4x=200$

4 $17x$ is less than 45 by 6.

Step 1 (Compare) $45 > 17x$

Step 2 (Make the greater number the minuend) $45 - 17x$

Step 3 (Make the equation with the remainder) $45-17x=6$

B. Formulate *Algebraic Equations* and solve the equations.

5 When 20 is subtracted from $5x$, the result is 200. Find the value of x .

$$5x-20=200, x=44$$

6 The age of Amy, 46, is greater than Steven's, $4x$, by 14. Find the value of x .

$46-4x=14, x=8$

7 Sherry had 100 pens originally. Amy borrows $5x$ from her. Now she has 50 left. Find the value of x .

$100-5x=50, x=10$

8 Bob has $10x$ books, less than Jessica's 140 books by 10. Find the value of x .

$140-10x=10, x=13$

Task 6

Rewrite the algebraic expressions in words and create a short story. One example has been done for you. When both you and your partner finish, check your partner's answers. Make sure his/her story matches the algebraic equation.

1 $6x-7=65$

Mathematical language *(whenis subtracted from...)*
When 7 is subtracted from $6x$, the result is 65.

Short story in everyday language

Read the equation	Operation used	Talking about the terms		
		The bigger term	The smaller term	The difference
	-	6x	7	65
	Language used	Originally Linda had $6x$ apples	She gave Tom 7 apples	Now she has 65 apples left.
write the story	Originally Linda had $6x$ apples. She gave Tom 7 apples. Now she has 65 apples left.			

2 $121-4x=21$

Mathematical language *(...greater than...by...)*
 121 is greater than $4x$ by 21

Short story in everyday language

Read the equation	Operation used	Talking about the terms		
		The bigger term	The smaller term	The difference
		121	4x	21
Language used	(Student's answer)	(Student's answer)	(Student's answer)	(Student's answer)
write the story	(Student's answer)			

3

$$56-4=2x$$

Mathematical language

(...less than...by...)

4 is less than 56 by 2x

Short story in everyday language

Read the equation	Operation used	Talking about the terms		
		The bigger term	The smaller term	The difference
		56	4	2x
Language used	(Student's answer)	(Student's answer)	(Student's answer)	(Student's answer)
write the story	(Student's answer)			

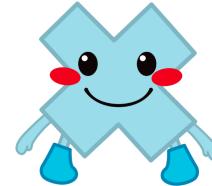
4

$$48-6x=6$$

Mathematical language

When $6x$ is subtracted from 48, the result is 6.

48 is greater than $6x$ by 6.


$6x$ is less than 48 by 6

Short story in everyday language

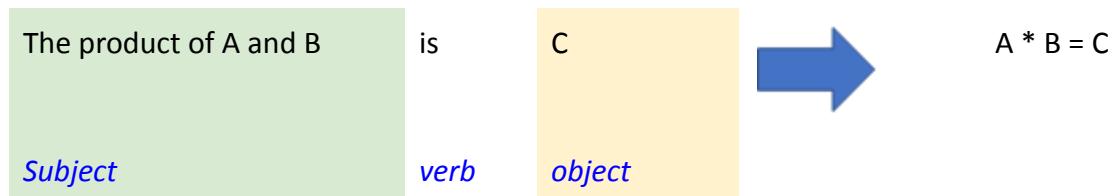
Read the equation	Operation used	Talking about the terms		
		The bigger term	The smaller term	The difference
	Language used	(Student's answer)	(Student's answer)	(Student's answer)
write the story	(Student's answer)			

Part 3 Multiplication

Task 7 Language used for 'multiplication'

“*” is the sign for subtraction in maths. What English expressions mean “multiplication”? Read the following examples and find out.

Expression	Mathematical	Everyday language (in daily life problems)	
	The product of times ... (倍數)	...half... (fraction 分數)
Question	<u>The product of</u> 2 and x is 20. Find the value of x.	Bob is y years old. The age of Alan is <u>twice</u> the age of Bob. Alan is 20 years old. Find the age of Bob.	Linda is d years old. The age of Candy is <u>half</u> the age of Linda. Candy is 5 years old. Find the age of Linda.
Algebraic equation	$2x=20, x=10$	$2y=20, y=10$	$\frac{1}{2}d=5, d=10$

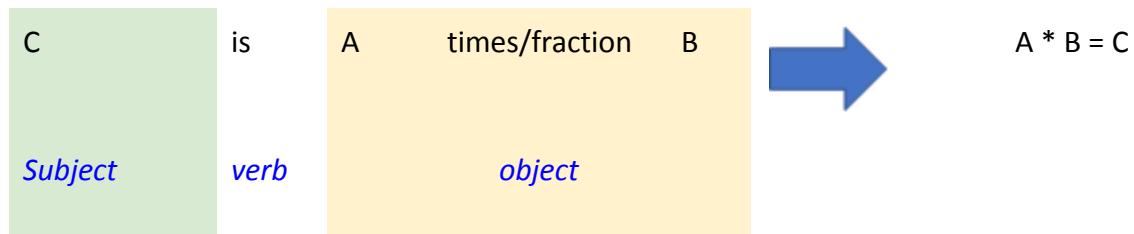

Language Support 4 - Signals for multiplication

There are different ways to say “multiplication” (*) in English, including the following:

(1) The product of

Example: The product of 2 and x is 20. \Rightarrow

Structure


Note: ‘product’ is a noun; ‘of’ is a preposition

(2) Times / fraction

Example: The age of Alan is twice the age of Bob.

The age of Candy is half the age of Linda.

Structure

Language Support 5 - 倍數、分數

A. 倍數

Fill in the blanks in the ‘In Chinese’ column.

In English	In Chinese
twice	兩倍
three times	三倍

four times	四倍
X times	X 倍

In daily language	A	is	4	times	B
In algebraic term	A	=	4	*	B
	A=4B				

Tip: Take '**be**' as '=' when you translate daily language into algebraic terms.

Fill in the table

Question Bob is y years old. Alan is 20 years old.
 The age of Alan is twice the age of Bob

Translating into algebraic equation	Step 1 (Locate the '=')	The age of Alan	=	twice	The age of Bob
	Step 2 (translate the known)	20	=	2*	
	Step 3 (translate the unknown)	20	=	2*	y
	Step 4 (tidy up the algebraic equation)	$2y=20$			

B. 分數

Fill in the blanks.

We write	We say
1/2	a half OR one half
1/3	a third OR one third
1/4	a fourth OR a quarter
1/9	a ninth OR one ninth
2/3	two thirds
3/5	three fifths
5/8	five eighths

In daily language	A	is	one-third	B
In algebraic term	A	=	$\frac{1}{3}*$	B

Fill in the table

Question Linda is d years old. Candy is 5 years old.

The age of Candy	is	half	the age of Linda
------------------	----	------	------------------

Translating into algebraic equation	Step 1 (Locate the '=')	The age of Candy	=	half	The age of Linda
	Step 2 (translate the known)	5	=	$\frac{1}{2}*$	The age of Linda
	Step 3 (translate the	5	=	$\frac{1}{2}*$	d

	unknown)				
	Step 4 (tidy up the algebraic equation)	$\frac{1}{2} d = 5$			

Task 8

A. *Formulate Algebraic Equations.*

1 The product of -2 and 3d is 12.

The product of ... and ... is 12.	\Rightarrow	$\dots * \dots = 12$
$-2 * 3d = 12$		

2 The weight of Mia is one-fourth the weight of Kalinda, X. Mia weighs 12kg.

Step 1: the weight of Mia = **one-fourth** the weight of Kalinda

Step 2: $12 = \frac{1}{4}$ the weight of Kalinda.

Step 3: $12 = \frac{1}{4} X$

Step 4: $\frac{1}{4} X = 12$.

3 Vivian is 160 cm. Her height is four-fifth the height of her brother, X.

Step 1: the height of Vivian = **four-fifth** the height of her brother

Step 2: $160 = \frac{4}{5}$ the height of her brother.

Step 3: $160 = \frac{4}{5} X$

Step 4: $\frac{5}{4} X = 160$

B. *Formulate Algebraic Equations and solve the equations.*

4 Mark is 25 years old. The age of Flex is three times the age of Mark. Find the age of Flex.

Step 1: the age of Flex = three times the age of Mark

Step 2: the age of Flex = $3*25$, Let the age of Flex be X.

Step 3: $X = 3*25$

Step 4: $X = 3*25$, $X=75$

5 The number of Olivia's books is twice that of James'. James has 20 books. Find the number of Olivia's.

Step 1: the number of Olivia's books = twice that of James;

Step 2: the number of Olivia's books = $2*20$, Let the number of Olivia's books be X.

Step 3: $X = 2*20$

Step 4: $X = 2*20$, $X = 40$

6 The product of 12 and 2y is 240. Find the value of x.

$12 \times 2y = 240$, $y = 10$

Task 9

Create a short story for each of the following algebraic equations. One example has been done for you. When both you and your partner finish, check your partner's answers. Make sure his/her story matches the algebraic equation.

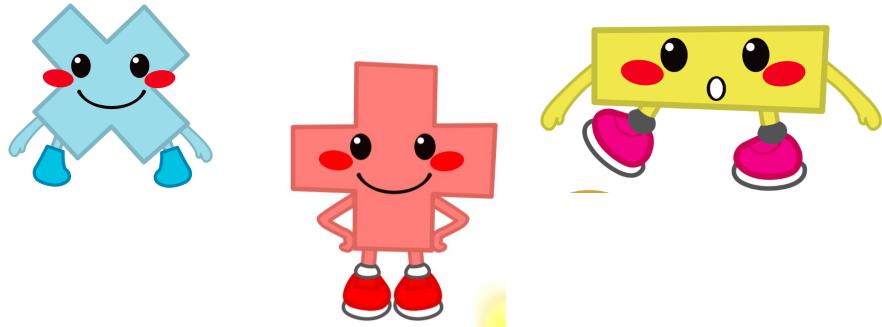
1 $6x = 48$

Read the equation	Operation used	Talking about the terms	
	*	6x	48
		Tom's age is 6 times Linda's age. Linda is x years old.	Tom is 48 years old
Write the story	Tom is 48 years old. His age is 6 times Linda's age, which is x.		

2 $3x = 15$

Read the equation	Operation used	Talking about the terms	
		3x	15
		(Student's answer)	(Student's answer)
Write the story	(Student's answer)		

3 $\frac{2}{3} x = 60$


Read the equation	Operation used	Talking about the terms	
		$\frac{2}{3} x$ (two-third)	60
		(Student's answer)	(Student's answer)
Write the story	(Student's answer)		

4 $\frac{5}{8} x = 40$

Read the equation	Operation used	Talking about the terms	
		$\frac{5}{8} x$ (five-eighth)	40
		(Student's answer)	(Student's answer)
Write the story	(Student's answer)		

Part 4 Multiplication and Addition/Subtraction

Lead-in:

Listen to the [song](#) (1:40-the end)and fill in the blanks according to the song and your mathematical knowledge

2-Step Equations

$$\begin{array}{r}
 3x - 5 = 13 \\
 + 5 \quad \quad \quad + 5 \\
 \hline
 3x = 18 \\
 \hline
 3 \quad \quad \quad 3 \\
 x = 6
 \end{array}$$

Lyrics

Let's try one that takes some patience.

I'm talking about a two-step equation,
like $3x$ minus (減) 5 equals (等於) 13.

Start on the side with the X you see.

First thing I'm gonna do is to *get rid of* (擺脫) 5.

Inverse operation is *addition*, right?

Do the same thing to the other side and
bring down $3x$ and *the equal sign* (等號).

Now we're not quite done: X isn't alone.

We gotta do the inverse is *division* (除法, *divide + sion* = *division*, *di'vei'shən* [dī'vei'shən]), yo!

This cancels out the 3 and leaves the X.
Gotta do the same thing to the other side next.

So I found that *the value of X* (X的值) is 6.

That's the end so you can circle it.

Yeah, we just did a little bit of *algebra*,

The United States of America.

Solving two-step equations	
Step 1	Start on the side with the <u>variable</u>
Step 2	Remove the number 'farthest' from the variable by doing the inverse operation. In the example given, <u>-5</u> is 'farthest' from 'x', <u>+3</u> is 'closest' to 'x', so we remove <u>-5</u> by <u>adding +5</u> on both sides.
Step 3	Do the <u>inverse</u> operation to get <u>x</u> alone. In the example, you see <u>multiplication (*)</u> , the inverse operation is <u>division (-)</u> , so you <u>divide +3</u> on both sides.
Remember: whatever you do on one side, you have to do the same on the other side to balance the equation.	

Now that you have learned about typical language features of addition, subtraction, and multiplication in algebraic equations in one known, you are ready to level up! In some scenarios, you may need to use both 'multiplication' and 'addition/subtraction' at the same time.

Task 10

Let's try to formulate the equation for the following scenario using the 4-step approach by filling in the table:

Q: Raymond has run x km. The distance that Gary has run is 2 km less than three times the distance that Raymond has run. If Gary has run 10 km, find the distance that Raymond has run.
(distance = 距離; If A, B.=如果A, 那麼B。)

Question	The distance that Gary has run	is	2km less than	three times The distance that Raymond has run
Step 1	The	=	2km less	Three times the distance

Translating into algebraic equations	(Locate the '=')	distance that Gary has run		than	that Raymond has run
	Step 2 (translate the known)	10	=	-2	3* the distance that Raymond has run
	Step 3 (translate the unknown)	10	=	-2	3x
	Step 4 (tidy up the algebraic equation)	$10 = 3x - 2$, $x = 4$			
	Tip: Translate 'less than' into '-' before the number that follows; similarly, translate 'greater/more than' into '+' before the number that follows				

Task 11 Fill in the table to formulate algebraic equation for the following questions

Q1: Samantha is z cm tall. Martina's height is 105 cm less than 2 times Samantha's height. If Martina is 165 cm tall, find the height of Samantha.

Question	Martina's height	is	105 cm less than	2 times Samantha's height
Translating into algebraic	Step 1 (Locate the '=')	Martina's height	=	105 cm less than
	Step 2 (translate the known)	165	=	-105
	Step 3 (translate	165	=	-105
				2z

equations	the unknown)				
	Step 4 (tidy up the algebraic equation)	$2z-105=165, z=135$			

Q2: Tom weighs m kg. Jack's weight is 15 kg less than twice that of Tom has. If their total weight is 90 kg, find the weight of Tom.

Question	Jack's weight	is	15kg less than	Twice that of Tom has (Tom's weight)
Translating into algebraic equations	Step 1 (Locate the '=')	Jack's weight	=	15kg less than
	Step 2 (translate the known)	Jack's weight	=	-15
	Step 3 (translate the unknown)	Jack's weight	=	-15
	Step 4 (tidy up the algebraic equation)	$2m-15 = \text{Jack's weight}$		

Question	Their total weight	is	90 kg
Translating into	Step 1 (Locate the '=')	Jack's weight + Tom's weight	=

algebraic equations	Step 2 (translate the known)	$(2m-15) + m$	=	90
	Step 3	$3m-15=90, m = 35$		

Q3: Peter has y marbles. Tommy has 5 marbles less than 3 times the marbles that Peter has. If they have a total of 27 marbles, how many marbles does Tommy have?

Question	Tommy's marbles	is	5 less than	3 times the marbles that Peter has
Translating into algebraic equations	Step 1 (Locate the '=')	Tommy's marbles	=	5 less than 3 times the marbles that Peter has
	Step 2 (translate the known)	Tommy's marbles	=	-5 3*the marbles that Peter has
	Step 3 (translate the unknown)	Tommy's marbles	=	-5 3y
	Step 4 (tidy up the algebraic equation)	Tommy's marbles = $3y-5$		

Question	they	have	A total of 27 marbles
Translating into algebraic equations	Step 1 (Locate the '=')	Tommy's marbles + Peter's marbles	= 27
	Step 2 (translate the known)	$(3y-5) + y$	= 27

	Step 3	$4y-5=27, y=8$, so Tommy has $3*8-5=19$ marbles
--	--------	--

Q4: The price of a rubber is \$p. The price of a pen is \$6 more than twice the price of the rubber. If the difference of the prices of the rubber and the pen is \$11, what is the price of the pen?

Question		The price of a pen	is	\$6 more than	Twice the price of the rubber
Translating into algebraic equations	Step 1 (Locate the '=')	The price of a pen	=	\$6 more than	twice the price of the rubber
	Step 2 (translate the known)	The price of a pen	=	+6	2*the price of the rubber
	Step 3 (translate the unknown)	The price of a pen	=	+6	2p
	Step 4	$2p+6 =$ The price of a pen			

Question		the difference of the prices of the rubber and the pen	is	11
Translating into algebraic equations	Step 1 (Locate the '=')	The price of a pen - The price of a rubber	=	11
	Step 2 (translate the known)	$(2p+6) - p$	=	11
	Step 3	$p+6=11, p=5$, so the price of a pen is $2*5 + 6 = 16\$$		

Task 12

Create a short story for each of the following algebraic equations. One example has been done for you. When both you and your partner finish, check your partner's answers. Make sure his/her story matches the algebraic equation.

1

$$6x + 9 = 57$$

Read the equation	Operation used	Talking about the terms		
	*	X: the price of a rubber is x		
		6x: The price of a pencil is 6 times the price of a rubber		
	+	6x	9	57
		The price of a pencil is 6 times the price of a rubber	9 greater than	The price of a pencil is 57
Write the story	The price of a pencil is 57. The price of a pencil is 9 dollars greater than 6 times the price of a rubber. What is the price of a rubber?			

2

$$3x - 2 = 13$$

Read the equation	Operation used	Talking about the terms		
	*	x: the price of a rubber is x		
		3x: The price of a pencil is 3 times the price of a rubber		
	-	3x	-2	13
		The price of a pencil is 3 times the price of a rubber	2 less than	The price of a pencil is 13
Write the story	The price of a pencil is 13. The price of a pencil is 2 dollars less than 3 times the price of a rubber. What is the price of a			

	rubber?
--	---------

3

$$14 + \frac{2}{3}x = 74$$

Read the equation	Operation used	Talking about the terms		
	*	x: the price of a rubber is x		
		$\frac{2}{3}x$: The price of a pencil is two-third the price of a rubber		
	+	14	$\frac{2}{3}x$	74
		14 greater than	The price of a pencil is two-third the price of a rubber	The price of a pencil is 74
Write the story	The price of a pencil is 74. The price of a pencil is 14 dollars greater than two-third the price of a rubber. What is the price of a rubber?			

4

$$\frac{5}{8}x - 8 = 32$$

Read the equation	Operation used	Talking about the terms		
	*	x: the price of a rubber is x		
		$\frac{5}{8}x$: The price of a pencil is five-eighth the price of a rubber		
	-	$\frac{5}{8}x$	-8	32
		The price of a pencil is	8 less than	The price of a pencil is 74

		five-eighth the price of a rubber		
Write the story	The price of a pencil is 32. The price of a pencil is 8 dollars less than five-eighth the price of a rubber. What is the price of a rubber?			

Part 5: My vocabulary bank and learning record

In this part, you will revise the topic vocabulary and assess your learning.

Task 13. My Vocabulary Bank

Algebraic equations in one unknown		
Subject-specific vocabulary	General academic vocabulary	Linking words
<i>Sum</i> (v.)	<i>Originally</i> (adv.)	<i>Expressing time or condition/ result:</i>
<i>Subtract</i> (v.)	<i>Share</i> (v.)	<i>When...</i>
<i>Multiply</i> (v.)	<i>Is shared among...</i> (v. ph.)	<i>After...</i>
<i>Minuend</i> (n.)	<i>Is subtracted from ...</i> (v. ph.)	

<i>Subtrahend (n.)</i> <i>Remainder (n.)</i> <i>Fraction (n.)</i> <i>Algebraic equation (n. ph.)</i> <i>Algebraic term (n. ph.)</i>	<i>Ago...</i> <i>If...</i> Expressing comparison: <i>As...as..</i> <i>greater/more than...</i> <i>Less than</i>
---	---

Task 14. My learning record

Put a tick (✓) if you think you can manage the item in this unit.

Do I know...?

	Item:	Yes (✓) / No (X)
1.	the concept of algebraic equations in one unknown	
2.	How to formulate and solve algebraic equation in one unknown	
3.	How to solve daily life problem by using algebraic equations	

4.	<p>the following language to formulate and solve algebraic equation in one unknown:</p> <p>the sum of ...; in total, [A] and [B] share [C] / [C] is shared among [A] and [B] the product of ... , [A] is greater / less than [B] by [C] [A] is [B] times [C]</p>	

